3.515 \(\int \frac{1}{x^2 (1+x)^{3/2} (1-x+x^2)^{3/2}} \, dx\)

Optimal. Leaf size=316 \[ \frac{5 \sqrt{2} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right ),-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}-\frac{5 \left (x^3+1\right )}{3 x \sqrt{x+1} \sqrt{x^2-x+1}}+\frac{5 \left (x^3+1\right )}{3 \sqrt{x+1} \left (x+\sqrt{3}+1\right ) \sqrt{x^2-x+1}}+\frac{2}{3 x \sqrt{x+1} \sqrt{x^2-x+1}}-\frac{5 \sqrt{2-\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{2\ 3^{3/4} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}} \]

[Out]

2/(3*x*Sqrt[1 + x]*Sqrt[1 - x + x^2]) - (5*(1 + x^3))/(3*x*Sqrt[1 + x]*Sqrt[1 - x + x^2]) + (5*(1 + x^3))/(3*S
qrt[1 + x]*(1 + Sqrt[3] + x)*Sqrt[1 - x + x^2]) - (5*Sqrt[2 - Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqr
t[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(2*3^(3/4)*Sqrt[(1 + x)/(
1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2]) + (5*Sqrt[2]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*Ellipt
icF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]
*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.109126, antiderivative size = 316, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {915, 290, 325, 303, 218, 1877} \[ -\frac{5 \left (x^3+1\right )}{3 x \sqrt{x+1} \sqrt{x^2-x+1}}+\frac{5 \left (x^3+1\right )}{3 \sqrt{x+1} \left (x+\sqrt{3}+1\right ) \sqrt{x^2-x+1}}+\frac{2}{3 x \sqrt{x+1} \sqrt{x^2-x+1}}+\frac{5 \sqrt{2} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}-\frac{5 \sqrt{2-\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{2\ 3^{3/4} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

2/(3*x*Sqrt[1 + x]*Sqrt[1 - x + x^2]) - (5*(1 + x^3))/(3*x*Sqrt[1 + x]*Sqrt[1 - x + x^2]) + (5*(1 + x^3))/(3*S
qrt[1 + x]*(1 + Sqrt[3] + x)*Sqrt[1 - x + x^2]) - (5*Sqrt[2 - Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqr
t[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(2*3^(3/4)*Sqrt[(1 + x)/(
1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2]) + (5*Sqrt[2]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*Ellipt
icF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]
*Sqrt[1 - x + x^2])

Rule 915

Int[((g_.)*(x_))^(n_)*((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((d
 + e*x)^FracPart[p]*(a + b*x + c*x^2)^FracPart[p])/(a*d + c*e*x^3)^FracPart[p], Int[(g*x)^n*(a*d + c*e*x^3)^p,
 x], x] /; FreeQ[{a, b, c, d, e, g, m, n, p}, x] && EqQ[m - p, 0] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(Sq
rt[2]*s)/(Sqrt[2 + Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a +
 b*x^3], x], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{1}{x^2 (1+x)^{3/2} \left (1-x+x^2\right )^{3/2}} \, dx &=\frac{\sqrt{1+x^3} \int \frac{1}{x^2 \left (1+x^3\right )^{3/2}} \, dx}{\sqrt{1+x} \sqrt{1-x+x^2}}\\ &=\frac{2}{3 x \sqrt{1+x} \sqrt{1-x+x^2}}+\frac{\left (5 \sqrt{1+x^3}\right ) \int \frac{1}{x^2 \sqrt{1+x^3}} \, dx}{3 \sqrt{1+x} \sqrt{1-x+x^2}}\\ &=\frac{2}{3 x \sqrt{1+x} \sqrt{1-x+x^2}}-\frac{5 \left (1+x^3\right )}{3 x \sqrt{1+x} \sqrt{1-x+x^2}}+\frac{\left (5 \sqrt{1+x^3}\right ) \int \frac{x}{\sqrt{1+x^3}} \, dx}{6 \sqrt{1+x} \sqrt{1-x+x^2}}\\ &=\frac{2}{3 x \sqrt{1+x} \sqrt{1-x+x^2}}-\frac{5 \left (1+x^3\right )}{3 x \sqrt{1+x} \sqrt{1-x+x^2}}+\frac{\left (5 \sqrt{1+x^3}\right ) \int \frac{1-\sqrt{3}+x}{\sqrt{1+x^3}} \, dx}{6 \sqrt{1+x} \sqrt{1-x+x^2}}+\frac{\left (5 \sqrt{\frac{1}{2} \left (2-\sqrt{3}\right )} \sqrt{1+x^3}\right ) \int \frac{1}{\sqrt{1+x^3}} \, dx}{3 \sqrt{1+x} \sqrt{1-x+x^2}}\\ &=\frac{2}{3 x \sqrt{1+x} \sqrt{1-x+x^2}}-\frac{5 \left (1+x^3\right )}{3 x \sqrt{1+x} \sqrt{1-x+x^2}}+\frac{5 \left (1+x^3\right )}{3 \sqrt{1+x} \left (1+\sqrt{3}+x\right ) \sqrt{1-x+x^2}}-\frac{5 \sqrt{2-\sqrt{3}} \sqrt{1+x} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{2\ 3^{3/4} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1-x+x^2}}+\frac{5 \sqrt{2} \sqrt{1+x} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1-x+x^2}}\\ \end{align*}

Mathematica [C]  time = 0.878586, size = 409, normalized size = 1.29 \[ -\frac{5 x^3+3}{3 x \sqrt{x+1} \sqrt{x^2-x+1}}+\frac{5 (x+1)^{3/2} \left (\frac{i \sqrt{2} \left (\sqrt{3}+3 i\right ) \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{\sqrt{3}+3 i}}}{\sqrt{x+1}}\right ),\frac{\sqrt{3}+3 i}{-\sqrt{3}+3 i}\right )}{\sqrt{x+1}}+\frac{12 \sqrt{-\frac{i}{\sqrt{3}+3 i}} \left (x^2-x+1\right )}{(x+1)^2}+\frac{3 \sqrt{2} \left (1-i \sqrt{3}\right ) \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{3 i+\sqrt{3}}}}{\sqrt{x+1}}\right )|\frac{3 i+\sqrt{3}}{3 i-\sqrt{3}}\right )}{\sqrt{x+1}}\right )}{36 \sqrt{-\frac{i}{\sqrt{3}+3 i}} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

-(3 + 5*x^3)/(3*x*Sqrt[1 + x]*Sqrt[1 - x + x^2]) + (5*(1 + x)^(3/2)*((12*Sqrt[(-I)/(3*I + Sqrt[3])]*(1 - x + x
^2))/(1 + x)^2 + (3*Sqrt[2]*(1 - I*Sqrt[3])*Sqrt[(3*I + Sqrt[3] - (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I +
 Sqrt[3] + (6*I)/(1 + x))/(-3*I + Sqrt[3])]*EllipticE[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*
I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x] + (I*Sqrt[2]*(3*I + Sqrt[3])*Sqrt[(3*I + Sqrt[3] - (6*I)/(1 + x))/(
3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 + x))/(-3*I + Sqrt[3])]*EllipticF[I*ArcSinh[Sqrt[(-6*I)/(3*I +
 Sqrt[3])]/Sqrt[1 + x]], (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x]))/(36*Sqrt[(-I)/(3*I + Sqrt[3])]*Sqrt[1
 - x + x^2])

________________________________________________________________________________________

Maple [A]  time = 1.331, size = 363, normalized size = 1.2 \begin{align*}{\frac{1}{ \left ( 6\,{x}^{3}+6 \right ) x}\sqrt{1+x}\sqrt{{x}^{2}-x+1} \left ( 5\,i\sqrt{3}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{i\sqrt{3}+3}}} \right ) x\sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{2\,x-1+i\sqrt{3}}{i\sqrt{3}-3}}}+15\,\sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{2\,x-1+i\sqrt{3}}{i\sqrt{3}-3}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{i\sqrt{3}+3}}} \right ) x-30\,\sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{2\,x-1+i\sqrt{3}}{i\sqrt{3}-3}}}{\it EllipticE} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{i\sqrt{3}+3}}} \right ) x-10\,{x}^{3}-6 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(1+x)^(3/2)/(x^2-x+1)^(3/2),x)

[Out]

1/6*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(5*I*3^(1/2)*EllipticF((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(I*3^(1/
2)+3))^(1/2))*x*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((2*x-1+I*3^(1/2))/(I*3
^(1/2)-3))^(1/2)+15*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((2*x-1+I*3^(1/2))/
(I*3^(1/2)-3))^(1/2)*EllipticF((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(I*3^(1/2)+3))^(1/2))*x-30*(-2*(
1+x)/(I*3^(1/2)-3))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((2*x-1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2)*Elli
pticE((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(I*3^(1/2)+3))^(1/2))*x-10*x^3-6)/(x^3+1)/x

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{2} - x + 1} \sqrt{x + 1}}{x^{8} + 2 \, x^{5} + x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^2 - x + 1)*sqrt(x + 1)/(x^8 + 2*x^5 + x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{2} \left (x + 1\right )^{\frac{3}{2}} \left (x^{2} - x + 1\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(1+x)**(3/2)/(x**2-x+1)**(3/2),x)

[Out]

Integral(1/(x**2*(x + 1)**(3/2)*(x**2 - x + 1)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)*x^2), x)